Minggu, 11 September 2011

Pengantar UML



Oleh M. Septian Maulana - 09.41010.0170


1.    Visual Modeling
Saat ini piranti lunak semakin luas dan besar lingkupnya, sehingga tidak bisa lagi dibuat asal-asalan. Piranti lunak saat ini seharusnya dirancang dengan memperhatikan hal-hal seperti scalability, security, dan eksekusi yang robust walaupun dalam kondisi yang sulit. Selain itu arsitekturnya harus didefinisikan dengan jelas, agar bug mudah ditemukan dan diperbaiki, bahkan oleh orang lain selain programmer aslinya. Keuntungan lain dari perencanaan arsitektur yang matang adalah dimungkinkannya penggunaan kembali modul atau komponen untuk aplikasi piranti lunak lain yang membutuhkan fungsionalitas yang sama.

Pemodelan (modeling) adalah proses merancang piranti lunak sebelum melakukan pengkodean (coding) . Model piranti lunak dapat dianalogikan seperti pembuatan blueprint pada pembangunan gedung. Membuat model dari sebuah sistem yang kompleks sangatlah penting karena kita tidak dapat memahami sistem semacam itu secara menyeluruh. Semakin komplek sebuah sistem, semakin penting pula penggunaan teknik pemodelan yang baik.




Dengan menggunakan model, diharapkan pengembangan piranti lunak dapat memenuhi semua kebutuhan pengguna dengan lengkap dan tepat, termasuk faktor-faktor seperti scalability, robustness, security, dan sebagainya.
Kesuksesan suatu pemodelan piranti lunak ditentukan oleh tiga unsur, yang kemudian terkenal dengan sebuan segitiga sukses (the triangle for success). Ketiga unsur tersebut adalah metode pemodelan (notation), proses (process) dan tool yang digunakan.Memahami notasi pemodelan tanpa mengetahui cara pemakaian yang sebenarnya (proses) akan membuat proyek gagal. Dan pemahaman terhadap metode pemodelan dan proses disempurnakan dengan penggunaan tool yang tepat.


semua hal yang berhubungan denghan pembuatan rekayasa perangkat lunak sudah pasti memerlukan perencanaan yang matang, sering kali dalam pembuatan suatu software atau aplikasi perimintaan dari customer tidak tersampaikan dengan baik oleh developer, dan begitu juga sebaliknnya. menurut james rumbaugh: dengan permodelan dapat memperlihatkan bagian-bagian penting dalam sistem.Pemodelan visual (visual modeling) merupakan proses menggambarkan cetak biru suatu sistem informasi secara grafis, terdiri dari komponan – komponen, interface, dan koneksi – koneksi yang ada dalam sistem tersebut, agar mudah dipahami dan dikomunikasikan.
Visual modeling dapat membantu untuk menampilkan elemen – elemen yang penting secara detail dari suatu masalah yang kompleks dan menyaring untuk kemudian membuang elemen – elemen yang tidak penting. Membuat model dari sebuah sistem yang kompleks sangatlah penting karena tidak dapat memahami sistem semacam itu secara menyeluruh. Semakin kompleks sebuah sistem, semakin penting pula penggunaan teknik pemodelan yang baik. Dengan menggunakan model diharapkan pengembangan piranti lunak dapat memenuhi semua kebutuhan pengguna dengan lengkap dan tepat, termasuk faktor-faktor seperti scalability, robustnees, security, dan sebagainya. Untuk melakukan pemodelan sistem / perangkat lunak secara visual digunakan UML (Unified
Modelling Language) yang digambarkan secara elektronik lewat sarana perangkat lunak Rational Rose. 
dengan membuat permodelan ada beberapa manfaat yang dapat diperoleh, yaitu:
a.    dengan permodelan dapat menggambarkan bisnis proses
setiap pembuatan sistem pasti memiliki tujuan dan alur bisnis yang dilakukan. dengan membuat notasi sistem yang terstandartproses bisnis dapat tersampaikan dengan baik. dengan usecase analisis kita dapat membuat gambaran bisnis proses dari sudut pandangpengguna.
b.    dengan permodelan dapat menjadi alat komunikasi
seperti yang telah dijelaskan, dengan notasi yang terstandart alur dari proses bisnis dan sistem kerja dapat tersampaikan menjadi satu sudut pandang. sehingga tidak lagi terjadi salah pesepsi antara pihak-pihak yang terlibat di dalam pembuatan sistem. dengan visual modeling kita dapat menggambarkan objek bisnis dan logika yang berfungsi sebagai analisa permodelan dan desain dari aplikasi.
c.    dengan permodelan dapat mengatur tingkat kompleksitas
dalam membuat aplikasi yang lingkupnnya cukup besar, diperlukan resources programmer yang banyak, dengan adannya permodelan yang terstandart maka sekompleks apapun sistem yang dibuat, akan bisa dimengerti alur permodelannya oleh orang lain.
d.    dengan visual modeling dapat membantu mendefiniskan arsitektur software
memodelkan sistem merupakan model yang berbeda dari bahasa implementasi (bahasa pemrograman). sehingga dengan apapun bahasa pemrograman yang digunakan untuk implementasi, bahasa permodelannya tetap bisa digunakan.

2.    MENGENAL UML
Unified Modelling Language (UML) adalah sebuah "bahasa" yg telah menjadi standar dalam industri untuk visualisasi, merancang dan mendokumentasikan sistem piranti lunak. UML menawarkan sebuah standar untuk merancang model sebuah sistem.
Dengan menggunakan UML kita dapat membuat model untuk semua jenis aplikasi piranti lunak, dimana aplikasi tersebut dapat berjalan pada piranti keras, sistem operasi dan jaringan apapun, serta ditulis dalam bahasa pemrograman apapun. Tetapi karena UML juga menggunakan class dan operation dalam konsep dasarnya, maka ia lebih cocok untuk penulisan piranti lunak dalam bahasa-bahasa berorientasi objek seperti C++, Java, C# atau VB.NET. Walaupun demikian, UML tetap dapat digunakan untuk modeling aplikasi prosedural dalam VB atau C.         




Seperti bahasa-bahasa lainnya, UML mendefinisikan notasi dan syntax/semantik. Notasi UML merupakan sekumpulan bentuk khusus untuk menggambarkan berbagai diagram piranti lunak. Setiap bentuk memiliki makna tertentu, dan UML syntax mendefinisikan bagaimana bentuk-bentuk tersebut dapat dikombinasikan. Notasi UML terutama diturunkan dari 3 notasi yang telah ada sebelumnya: Grady Booch OOD (Object-Oriented Design), Jim Rumbaugh OMT (Object Modeling Technique), dan Ivar Jacobson OOSE (Object-Oriented Software Engineering).
Sejarah UML sendiri cukup panjang. Sampai era tahun 1990 seperti kita ketahui puluhan metodologi pemodelan berorientasi objek telah bermunculan di dunia. Diantaranya adalah: metodologi booch [1], metodologi coad [2], metodologi OOSE [3], metodologi OMT [4], metodologi shlaer-mellor [5], metodologi wirfs-brock [6], dsb. Masa itu terkenal dengan masa perang metodologi (method war) dalam pendesainan berorientasi objek. Masing-masing metodologi membawa notasi sendiri-sendiri, yang mengakibatkan timbul masalah baru apabila kita bekerjasama dengan group/perusahaan lain yang menggunakan metodologi yang berlainan.


Dimulai pada bulan Oktober 1994 Booch, Rumbaugh dan Jacobson, yang merupakan tiga tokoh yang boleh dikata metodologinya banyak digunakan mempelopori usaha untuk penyatuan metodologi pendesainan berorientasi objek. Pada tahun 1995 direlease draft pertama dari UML (versi 0.8). Sejak tahun 1996 pengembangan tersebut dikoordinasikan oleh Object Management Group (OMG – http://www.omg.org). Tahun 1997 UML versi 1.1 muncul, dan saat ini versi terbaru adalah versi 1.5 yang dirilis bulan Maret 2003. Booch, Rumbaugh dan Jacobson menyusun tiga buku serial tentang UML pada tahun 1999 [7] [8] [9]. Sejak saat itulah UML telah menjelma menjadi standar bahasa pemodelan untuk aplikasi berorientasi objek.

Konsepsi Dasar UML


Dari berbagai penjelasan rumit yang terdapat di dokumen dan buku-buku UML. Sebenarnya konsepsi dasar UML bisa kita rangkumkan dalam gambar dibawah.


Abstraksi konsep dasar UML yang terdiri dari structural classification, dynamic behavior, dan model management, bisa kita pahami dengan mudah apabila kita melihat gambar diatas dari Diagrams. Main concepts bisa kita pandang sebagai term yang akan muncul pada saat kita membuat diagram. Dan view adalah kategori dari diagaram tersebut.


3.    DIAGRAM UML
Setiap sistem yang kompleks seharusnya bias dipandang dari sudut yang berbeda – beda sehingga bisa mendapatkan pemahaman secara menyeluruh . Untuk upaya tersebut UML menyediakan 9 jenis diagram yang dapat dikelompokkan berdasarkan sifatnya statis atau dinamis. Ke 9 diagram dalam UML itu adalah :

a.    Business Use Case Diagram
Menggambarkan urutan tindakan yang dilakukan oleh suatu bisnis yang menghasilkan sebuah nilai yang dapat dilihat dan ditunjukan untuk suatu business actor tertentu. Business actor merupakan Menggambarkan peran yang dimainkan oleh seseorang atau sesuatu yang dengannya bisnis berinteraksi

b.    Activity Diagram
 Activity diagrams menggambarkan berbagai alir aktivitas dalam sistem yang sedang dirancang, bagaimana masing-masing alir berawal, decision yang mungkin terjadi, dan bagaimana mereka berakhir. Activity diagram juga dapat menggambarkan proses paralel yang mungkin terjadi pada beberapa eksekusi.

Activity diagram merupakan state diagram khusus, di mana sebagian besar state adalah action dan sebagian besar transisi di-trigger oleh selesainya state sebelumnya (internal processing). Oleh karena itu activity diagram tidak menggambarkan behaviour internal sebuah sistem (dan interaksi antar subsistem) secara eksak, tetapi lebih menggambarkan proses-proses dan jalur-jalur aktivitas dari level atas secara umum.

Sebuah aktivitas dapat direalisasikan oleh satu use case atau lebih. Aktivitas menggambarkan proses yang berjalan, sementara use case menggambarkan bagaimana aktor menggunakan sistem untuk melakukan aktivitas.

Sama seperti state, standar UML menggunakan segiempat dengan sudut membulat untuk menggambarkan aktivitas. Decision digunakan untuk menggambarkan behaviour pada kondisi tertentu. Untuk mengilustrasikan proses-proses paralel (fork dan join) digunakan titik sinkronisasi yang dapat berupa titik, garis horizontal atau vertikal.

Activity diagram dapat dibagi menjadi beberapa object swimlane untuk menggambarkan objek mana yang bertanggung jawab untuk aktivitas tertentu.

Contoh activity diagram tanpa swimlane:



c.    Use case Diagram
 Use case diagram menggambarkan fungsionalitas yang diharapkan dari sebuah sistem. Yang ditekankan adalah “apa” yang diperbuat sistem, dan bukan “bagaimana”. Sebuah use case merepresentasikan sebuah interaksi antara aktor dengan sistem. Use case merupakan sebuah pekerjaan tertentu, misalnya login ke sistem, meng-create sebuah daftar belanja, dan sebagainya.

Seorang/sebuah aktor adalah sebuah entitas manusia atau mesin yang berinteraksi dengan sistem untuk melakukan pekerjaan-pekerjaan tertentu.

Use case diagram dapat sangat membantu bila kita sedang menyusun requirement sebuah sistem, mengkomunikasikan rancangan dengan klien, dan merancang test case untuk semua feature yang ada pada sistem.
Sebuah use case dapat meng-include fungsionalitas use case lain sebagai bagian dari proses dalam dirinya. Secara umum diasumsikan bahwa use case yang di-include akan dipanggil setiap kali use case yang meng-include dieksekusi secara normal.Sebuah use case dapat di-include oleh lebih dari satu use case lain, sehingga duplikasi fungsionalitas dapat dihindari dengan cara menarik keluar fungsionalitas yang common.
Sebuah use case juga dapat meng-extend use case lain dengan behaviour-nya sendiri.
Sementara hubungan generalisasi antar use case menunjukkan bahwa use case yang satu merupakan spesialisasi dari yang lain.


Contoh use case diagram :


d.    Sequence Diagram (Diagram urutan)
Sequence diagram menggambarkan interaksi antar objek di dalam dan di sekitar sistem (termasuk pengguna, display, dan sebagainya) berupa message yang digambarkan terhadap waktu. Sequence diagram terdiri atar dimensi vertikal (waktu) dan dimensi horizontal (objek-objek yang terkait).

Sequence diagram biasa digunakan untuk menggambarkan skenario atau rangkaian langkah-langkah yang dilakukan sebagai respons dari sebuah event untuk menghasilkan output tertentu. Diawali dari apa yang men-trigger aktivitas tersebut, proses dan perubahan apa saja yang terjadi secara internal dan output apa yang dihasilkan.

Masing-masing objek, termasuk aktor, memiliki lifeline vertikal.

Message digambarkan sebagai garis berpanah dari satu objek ke objek lainnya. Pada fase desain berikutnya, message akan dipetakan menjadi operasi/metoda dari class.

Activation bar menunjukkan lamanya eksekusi sebuah proses, biasanya diawali dengan diterimanya sebuah message.

Untuk objek-objek yang memiliki sifat khusus, standar UML mendefinisikan icon khusus untuk objek boundary, controller dan persistent entity.

Contoh sequence diagram :



e.    Collaboration Diagram

Collaboration diagram juga menggambarkan interaksi antar objek seperti sequence diagram, tetapi lebih menekankan pada peran masing-masing objek dan bukan pada waktu penyampaian message. Setiap message memiliki sequence number, di mana message dari level tertinggi memiliki nomor 1. Messages dari level yang sama memiliki prefiks yang sama.




f.     Diagram Kelas
Class adalah sebuah spesifikasi yang jika diinstansiasi akan menghasilkan sebuah objek dan merupakan inti dari pengembangan dan desain berorientasi objek. Class menggambarkan keadaan (atribut/properti) suatu sistem, sekaligus menawarkan layanan untuk memanipulasi keadaan tersebut (metoda/fungsi).

Class diagram menggambarkan struktur dan deskripsi class, package dan objek beserta hubungan satu sama lain seperti containment, pewarisan, asosiasi, dan lain-lain.

Class memiliki tiga area pokok :

1.    Nama (dan stereotype)

2.    Atribut
3.    Metoda

Atribut dan metoda dapat memiliki salah satu sifat berikut :

      Private, tidak dapat dipanggil dari luar class yang bersangkutan

      Protected, hanya dapat dipanggil oleh class yang bersangkutan dan anak-anak yang mewarisinya


      Public, dapat dipanggil oleh siapa saja




Class dapat merupakan implementasi dari sebuah interface, yaitu class abstrak yang hanya memiliki metoda. Interface tidak dapat langsung diinstansiasikan, tetapi harus diimplementasikan dahulu menjadi sebuah class. Dengan demikian interface mendukung resolusi metoda pada saat run-time.




Sesuai dengan perkembangan class model, class dapat dikelompokkan menjadi package. Kita juga dapat membuat diagram yang terdiri atas package.




Hubungan Antar Class

1.    Asosiasi, yaitu hubungan statis antar class. Umumnya menggambarkan class yang memiliki atribut berupa class lain, atau class yang harus mengetahui eksistensi class lain. Panah navigability menunjukkan arah query antar class.

2.    Agregasi, yaitu hubungan yang menyatakan bagian (“terdiri atas..”).

3.    Pewarisan, yaitu hubungan hirarkis antar class. Class dapat diturunkan dari class lain dan mewarisi semua atribut dan metoda class asalnya dan menambahkan fungsionalitas baru, sehingga ia disebut anak dari class yang diwarisinya. Kebalikan dari pewarisan adalah generalisasi.

4.    Hubungan dinamis, yaitu rangkaian pesan (message) yang di-passing dari satu class kepada class lain. Hubungan dinamis dapat digambarkan dengan menggunakan sequence diagram yang akan dijelaskan kemudian.



Contoh class diagram :












g.    Statechart Diagram
Statechart diagram menggambarkan transisi dan perubahan keadaan (dari satu state ke state lainnya) suatu objek pada sistem sebagai akibat dari stimuli yang diterima. Pada umumnya statechart diagram menggambarkan class tertentu (satu class dapat memiliki lebih dari satu statechart diagram).

Dalam UML, state digambarkan berbentuk segiempat dengan sudut membulat dan memiliki nama sesuai kondisinya saat itu. Transisi antar state umumnya memiliki kondisi guard yang merupakan syarat terjadinya transisi yang bersangkutan, dituliskan dalam kurung siku. Action yang dilakukan sebagai akibat dari event tertentu dituliskan dengan diawali garis miring.

Titik awal dan akhir digambarkan berbentuk lingkaran berwarna penuh dan berwarna setengah.



Contoh statechart diagram :









h.    Component Diagram
Component diagram menggambarkan struktur dan hubungan antar komponen piranti lunak, termasuk ketergantungan (dependency) di antaranya

Komponen piranti lunak adalah modul berisi code, baik berisi source code maupun binary code , baik library maupun executable, baik yang muncul pada compile time, link time, maupun run time. Umumnya komponen terbentuk dari beberapa class dan/atau package, tapi dapat juga dari komponen-komponen yang lebih kecil. Komponen dapat juga berupa interface, yaitu kumpulan layanan yang disediakan sebuah komponen untuk komponen lain.



Contoh component diagram:
















i.      Deployment Diagram
      Deployment/physical diagram menggambarkan detail bagaimana komponen di-deploy dalam infrastruktur sistem, di mana komponen akan terletak (pada mesin, server atau piranti keras apa), bagaimana kemampuan jaringan pada lokasi tersebut, spesifikasi server, dan hal-hal lain yang bersifat fisikal.
Sebuah node adalah server, workstation, atau piranti keras lain yang digunakan untuk men-deploy komponen dalam lingkungan sebenarnya. Hubungan antar node (misalnya TCP/IP) dan requirement dapat juga didefinisikan dalam diagram ini.

Ke 9 diagram ini tidak mutlak harus digunakan dalam pengembangan perangkat lunak, semua dibuat sesuai dengan kebutuhan.

Sumber : Kuliah Umum IlmuKomputer.Com Copyright © 2003 IlmuKomputer.Com – Pengantar UML


Leave a Reply